

alttere	nt ae	salina	tion tec	nnoi	ogies
	MSF	MED-TVC	MED	MVC	RO
Typical unit size m ³ d ⁻¹	50,000 - 70,000	10,000 - 35,000	5,000 - 15,000	100 - 2500	24,000
Electrical Energy Consumption kWh m [.] 3	4 - 6	1.5 – 2.5	1.5 – 2.5	7 - 12	3 - 5.5
Thermal Energy Consumption kJ kg 1	190 (GOR =12.2) – 390 (GOR =6)	145 (GOR =16) – 390 (GOR =6) #1	230 (GOR =10) – 390 (GOR =6)	None	None
Electrical Equivalent	# ³	#4	#5	None	None
^{#²} for Thermal Energy kWh m ^{·3}	9.5 - 19.5	9.5 - 25.5	5 - 8.5		
Total Equivalent Energy Consumption kWh m ⁻³	13.5 - 25.5	11 - 28	6.5 - 11	7 - 12	3 - 3.5 (Up to 7 with Boron treatment)

Desalinated water presents and added value to any OTEC project

Example:

1 MW (Turbine power) OTEC plant would produce:

A net power of 675 kW

□ Fresh water at a rate of 15 kg/s (54 t/h)

Energy requirement to produce 54 t/h using the most energy-efficient desalination process would be:

 $54 m^3 / h \times 3.5 kWh / m^3 = 189kW$

Hi	story of OTEC research in Japan
1970	New energy research committee of Japan expressed interest in OTEC for power generation
1973	Saga University, Japan commenced research study on OTEC technology
1974	OTEC was researched as part of Sunshine project plan, Japan
1977	Saga University has been able to generate 1kW of power using OTEC system
1980	Saga University performed experiments off Shimane in Japan Sea
1981	Tokyo Electric Power Co., succeeded in generating 120kW of power at the republic of Nauru in the south pacific
1982	Kyushu Electric Power Co. succeeded in generating 50kW of power at Tokunoshima, off Kagoshima, Japan
1985	Saga University completed 75kW experimental OTEC plant
1988	Establishment of OTEC association in Japan
1989	Japanese Agency of Science and Technology began studies on utilization of deep ocean water (DOW) off Toyama in Japan Sea after success in generating 3kW power
1994	Saga University constructed a plant of new power cycle
1995	Saga University started testing the new 4.5kW cycle (Kalina cycle, Uehara cycle)
1997	Signing of collaboration memorandum with National Institute of Ocean Technology (NIOT), India, on OTEC study
2003	Saga University Completed 30kW multipurpose OTEC Plant at Imari, Saga Pref.
2009	Saga University has been able to generate a net power of 20.5 kW using Ammonia/water working fluid, representing about 70% of the total generated power

Experimental conditi	ons
Parameter	Value
Warm source inlet temperature [°C]	30
Warm source volumetric flow rate [m ³ /h]	350~450
Cold source inlet temperature [°C]	9
Cold source volumetric flow rate [m ³ /h]	350~450
Heat transfer area of evaporator per unit [m ²]	136.2
Heat transfer area of condenser per unit [m ²]	91.1
Number of heat exchanger units [-]	2,3,4
Evaporator inlet mass flow rate [t/h]	6~12
Evaporator inlet mass fraction y ₄ [NH ₃ kg/kg]	0.95

Roa	admap for	OTE	C (N	EDO)	
Vision, challenges and actions		Technological dev	elopment targets		
 World top in experimental stu 	Idies		2015	2020	2030
There has been more interest in many countries and R&D restarted.		Enlightening Japanese enterprises and reinforcing internationa competitiveness	Verification tests on a 1-MW plant	Starting operation of a plant for commercial use Promoting installation in Japan	Increasing plant output Increasing global market share
		Plant size	Up to 1 MW	Up to 10 MW	Up to 50 MW
Goals		Generation cost	About 40 - 60 yen/kWh	About 15 - 25 yen/kWh	About 8 - 13 yen/kWh
 Accelerating R&D for commercialization, keeping the world top rank in technology, and developing competitive equipment and domestic companies 	 Promoting installation in the country and developing new industries from the view point of necessity of developing industries in Japan, realizing a low carbon society, and securing energy. 	Detail of technolog Technolo Establishment of core technologies	cal development) gical challenge Initial cost reducti Improvement of generation efficiency	Solution & con • Development of it • Low cost construct • Improvement of cyc • Highly efficient work • Development of high	nponent technology ow cost titon technologies le thermal efficiency ing fluid ty efficient new cycles
Promoting R&D on MW-class plants through verification tests and improving reliability Establishing core technologies		Establishmen t of plant operation technologies	Maintenance and prevention of fail of plants Application to marine environm Environmental impact evaluatio	d • Monitoring system Iure • Marine environment prediction sy • Remote control system • Prevention of attaching marine crea • Collecting basic data through verific tests • Prediction of influence through simu	
Challenges for realizing vis	Improvement of business feasibility	Effective utilization hot discharged wa Complex use of deep seawater	of • Utilization of discharged water from manufacturing and power plants • Seawater desalination technology, creation fisheries with deep seawater, code denergy utilization (for air conditioning etc.), hydrog		

16

OTEC Roadmap (July 2010) New Energy and industrial technology Development Organization (NEDO)					
Aspect/Year	2015	2020	2030		
Technology	-Demonstration Tests	-Domestic implementation -Start commercialization	-Wide implementation in the international markets		
Scale (MW)	~1	~10	~50		
Cost (JPY/kWh)	40~60	15~25	8~13		

